HEAT TRANSFER AND FRICTION IN THE TURBULENT
BOUNDARY LAYER OF A COMPRESSIBLE GAS AT A
PERMEABLE SURFACE

B. P. Mironov and N, I, Yarigina UDC 536.242:532.546:532.526

Test data on heat transfer and friction are generalized for a wide range of the injection fac-
tor with the Mach number equal fo 0.3, 2.05, 3,05, and 4, The test results agree with the
theoretical analysis also given here,

The problem considered here is of great practical importance. Boundary layers of this kind are
formed during porous cooling, during the burnout of heat resistant coatings on objects returning from
outer space, etc. Although numerous studies have been made concerning this problem (see [1]), many of
its aspects have not yet-been clearly explained, It is not the quantitative discrepancy between various
existing data which concerns us here, That can be explained by the peculiarities of the particular test
conditions., Much more significant seem here the following fundamental questions: how does injection af-
fect the recovery factor, does the modified Reynolds analogy apply here, is it sufficient to account for the
effect of anisothermality on friction and heat transfer by simply assigning standard values to the Sty num-
ber and the Cg, factor on the basis of the relations derived in [2, 3] with the results in [4] taken into con-
sideration, etc?

We will present here the results of an experimental study concerning the friction and the heat trans-
fer in a supersonic turbulent boundary layer at a porous surface, with the Mach number equal o 0.3, 2.05,
3.05, or 4 and with the injection parameter (air into air) varying over a wide range of values. A theoreti-
cal analysis of these processes will be made by applying the Kutateladze —Leont'ev theory to a turbulent
boundary layer of a fluid with a vanishingly low viscosity {1].

For a supersonic anisothermal turbulent boundary layer with a transverse fluid flow, assuming that
similarity exists between the velocity field and the enthalpy field, we have
1 .
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by analogy with [2, 3] (Re — =), Here y*=1+1r(k—1/2)M?, From Eq. (1) follows for the referred heat
transfer (friction) function ¥ = (St/Sty)ge**
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where F is an incomplete elliptic integral of the first kind,
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and w,, wy are roots of the equation py/p = 0= f(y, y*, w).
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Fig. 1. Recovery factor as a function of the injection param-
eter: Ma = 2,05 (1), 3.05 (2), 4.0 (3). Data according to [7}]:
Ma = 2.0 (4), 3.2 (5).

Fig. 2. Heat transfer as a function of injection: Ma = 2,05 (1),
3.05 (2), 4.0 (3), and y = 0.9-1.85, Solid line represents cal-
culation according to Eq. (3).

It is interesting to note that the exact solutions for function ¥ according to (2) can be approximated
by the simple relation

¥ =YYV, (3)
which represents a combination of already well-known referred friction and heat transfer functions [2-6]:
5 1 2
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Y, = (1—— L ) is the Kutateladze —Leont'ev formula.
cr

The critical value of the injection parameter by, can be found from (1) with ¥ = 0, According to [1],
1 2
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The exact solution for by, can, in turn, also be replaced by a simple approximation
ber = bex oqu. (5)

The values of bgp corresponding to critical injection at subsonic velocities are given by well-known
formulas in [2].

For calculations according to formulas (3)-(5) at a given value of the Mach number, one must know
the recovery factor as a function of the injection parameter r = f(b). This relation has been determined
experimentally. :

The tests for this study were performed on a porous cylinder 40 mm in diameter and 336 mm long,
oriented parallel to the stream inside the aerodynamic tunnel at the Institute. Essential information about
the instrumentation can be found in [1]. The recovery factor was measured at a constant stagnation tem-
perature in the mainstream (100°C) and at a constant injection factor by, the temperature of the injected
gas was varied so as to produce test modes with different directions of heat flow, From the thermal flux
versus temperature curve q = f(Ty) and its intersection with the axis of abscissas, we then found the
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Fig. 3. Typical velocity profile plotted for determining the friction coeffi-
cient (Ma = 3.05, j = 0.168+1072),

Fig. 4. Friction as a function of the injection parameter b: Ma = 0.3 (1),
2.05 (2), 3.05 (3), 4.0 (4), 3.2 [10] (5). Solid line represents calculation
according to Eq. (3).

stagnation temperature at the wall T?{, and from there we determined the recovery factor. This procedure
was facilitated by the almost linear relation between thermal flux and wall temperature near the axis of
abscissas, The results are shown in Fig, 1 and agree with the corresponding data in [7].

With the aid of the experimentally obtained relation r = f(by), the heat transfer data were now evalu-
ated in the coordinates of the theoretical formulas (3) and (5):
St
— 6
‘{’ V.St = O ©
According to Fig, 2, the data evaluated according to formula (6) do not depend on the Mach number
and confirm the validity of calculations based on formulas (3)-(5). One must emphasize that it is quite
impossible to generalize the test data without faking into account relations r = f(byg) and ber = f(y). With-~
out these relations, a generalization is possible only for some definite test conditions which, in the final
analysis, represent a certain special case, This is well illustrated in [1].

The test data on friction have been generalized analogously. The friction coefficients were deter-
mined by a transformation analogous to the Cowles transformation [8], from the velocity profiles mea -~
sured under adiabatic test conditions. D. Cowles had analyzed the effect of compressibility on the magni-
tude of turbulent shear stress at an impermeable wall in an adiabatic flow under constant pressure, by
transforming the transverse coordinate in the same manner as Dorodnitsyn had done earlier but consider-
ing the flow function not to be invariant with respect to this transformation, Ithas been shown in [9] that
the Cowles method is valid in the zone where the "wall law" applies and yields the skin friction, if the
velocity profile in the turbulent main-stream without extrapolation to the laminar sublayer is known, The
basie difficulty with the Cowles method is in determining the quantity p/ o phy» Which must be evaluated
empirically (¢(x) = (zp ¢w) /(¢ —yw) is the mapping function, uy, is the gas viscosity at the wall, and M
is the gas viscosity in the "incompressible transform system" (the dash above a symbol refers the given
quantity fo the transform system).

This dimensionless parameter is usually determined on the basis of some hypothesis as, for example,
the sublayer hypothesis. It is assumed in the latter case that the Reynolds number remains constant at
the edge of the laminar sublayer. In more complicated situations as when mass transfer also occurs, for
example, the application of the sublayer hypothesis becomes problematic on account of insufficient available
information about the behavior of laminar sublayers during the flow of compressible and incompressible
fluids, It will be shown here that C¢ can be successfully determined at a low Mach number (Ma = 0-4.0)
by means of just one Dorodnitsyn transformation of the transverse coordinate, provided

ﬁ;’(rpw =~1. (7)

This equality is exact, when there is no injection, at a low Mach number and at Re** — «_ Condi~
tion (7) means that a correspondence is sought between two converging points in the compressible and in
the incompressible stream respectively with the same Reynolds number: Re** = Re**, The skin friction
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at an impermeable surface in a compressible stream was calculated on the basis of the Cowles hypothesis
of a logarithmic segment in the velocity profile which can be described by the "wall law," Representing
the test data in the form

u

(w0 | oloudy
u § ,
Lol
Uy Bw

with p/p, determined from the Crocco integral [2], the "coefficients of skin friction in the incompressible
transform stream" Cg were then found. For a compressible stream C¢ was determined from the relation
between the friction coefficients for a compressible and an incompressible boundary layer, according to
the theory in [3] with Re — «:

Cs )
-~ =V ) 8
( C, Je M (8)

inasmuch as this case is close to the case where i/ ouw = 1. The time calculated values of Cy, with a
maximum scatter of 17%, for an impermeable surface and for Ma = 4 were close to the values obtained
by the Baronti—Libbi method (for Ma < 4 the scatter of Cy values was smaller [9]). At the same time,
the C¢ values agreed with the Karman formula.

The friction coefficients at a permeable surface were determined for the "incompressible transform
stream™ on the basis of Stevenson's law

y —_—
C_.f o UyPy j"L dy VEL
2 2 {(1+ I.incomlgr“jl/2 1} 1 1 o fo 2
= = - = i = Cr 9
Jincompr Cy/2 K W * ®

with K= 0.41 and C = 4.9.

Equation (9) includes, besides Ef, also the unknown injection factor _j_incompr for the incompressible
stream, The relation between jincompr and the given injection factor j was established as

j_incompr =¥y (10)

from the conditions that the friction is Newtonian and that both streams satisfy the momentum equations
at the wall. The validity of expression (10) is indicated by the fact that, in Dorodnitsyn variables, the
velocity profiles at different values of the Mach number are identical if the value of by is the same.

The value of C¢ for each gas injection rate and for a given Mach number was found from the measured
profile, with the aid of a computation grid set up according to Egs. (9) and (10). The value of ¥y in (10)
was determined with the aid of the relation r = f(by) (Fig. 1). The calculations became less precise with
an increasing injection factor, because the logarithmic segment in the measured profile was becoming
shorter and the density of the computation grid was becoming denser. A typical graph for determining Cs
is shown in Fig. 3. The scatter of C¢ values here is 15% with b= 0.5 and already 50% or more with b=1.
From (—Jf we calculated C¢ according to relation (8) with the recovery factor also taken into account, In
Fig. 4 are shown the results of friction calculations with the injection factor varying over a wide range
(by; = 1.0-5.2) and the Mach number from 0.3 to 4. These results are also compared here with those which
Dershin et al. have obtained by measuring the friction coefficient at Ma = 3.2 with a floating probe [10].
The data on friction as well as those on heat transfer can be accurately enough describedby the same
theoretical relations (3), (5). This correspondence (Fig. 2, 4) confirms that the modified Reynolds analogy
holds true for a turbulent boundary layer with mass transfer during a supersonic flow (at least at a Mach
number up to Ma = 4), This is also confirmed by the approximate similarity between the measured velocity
and temperature fields in supersonic streams at various values of the injection factor.

In conclusion, we note that, despite the rather close correlation between friction coefficients found
from measured velocity profiles and those calculated according to relations (3)-(5), the accuracy of the
proposed method (the transformation method) of determining the magnitude of friction must still be checked
out. For this, one requires a series of friction coefficient measurements with a floating probe, such as
in [10]. In addition, are needed also the results of velocity field measurements in the boundary layer
which, unfortunately, are not given in [10].
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NOTATION

is the referred heat transfer (friction) function;

is the Stanton number for standard isothermal conditions without mass transfer;
is the dimensionless velocity across the boundary layer;

is the density;

are the injection parameters;
is the recovery factor;
is the Mach number;
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